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Axially symmetric potential flow around a slender body
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Axially symmetric potential flow about an axially symmetric rigid body is
considered. The potential due to the body is represented as a superposition of
potentials of point sources distributed along a segment of the axis inside the body.
The source strength distribution satisfies a linear integral equation. A complete
uniform asymptotic expansion of its solution is obtained with respect to the
slenderness ratio e¢?, which is the maximum radius of the body divided by its
length. The expansion contains integral powers of ¢ multiplied by powers of loge.
From it expansions of the potential, the virtual mass and the dipole moment of
the body are obtained. The flow about the body in the presence of an axially
symmetric stationary obstacle is also determined. The method of analysis
involves a technique for the asymptotic solution of integral equations.

1. Introduction

Suppose an axially symmetric rigid body moves along its axis in an incompres-
sible inviscid fluid at rest at infinity. The resulting irrotational motion of the fluid
is an axially symmetric potential flow. We shall represent its potential @ as
a superposition of potentials of point sources distributed along a segment of the
axis inside the body. Then the boundary condition on the surface of the body will
lead to a linear integral equation for the source strength distribution. By using
a special technique, we shall obtain a complete uniform asymptotic expansion of
the solution of this integral equation with respect to the parameter ¢, which is the
square of the ratio of the maximum radius of the body to its length. From the
solution we shall obtain asymptotic expansions of @, of the virtual mass M and of
the dipole moment x# of the body. In addition we shall consider an arbitrary
axially symmetric flow incident on the body and also the case when another
stationary axially symmetric body is present.

Potential flow past an axially symmetric slender body has been studied
extensively since the work of Munk (1924). This study is now part of slender body
theory, which is the theory of any type of flow past a slender body. It is discussed
in detail, together with the relevant references, in various books, e.g. Thwaites
(1960). Apparently only the first two terms in the expansion with respect to the
slenderness ratio €? had been determined before the work of Moran (1963), who
obtained the third term for the axially symmetric case but was unable to go
further. We shall obtain the complete expansion in this case. In doing so, like
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Moran, we shall use Landweber’s (1951) idea that the source strength vanishes in
an interval near each end of the body. The determination of the lengths of these
intervals is part of the problem. We shall also assume that the profile curve of the
body is analytic.

Our method for obtaining the asymptotic expansion of the solution of the
integral equation may be of interest in itself because it seems to be applicable to
other equations.

2. Derivation of the integral equation

Let @ = ®°+ @Y be the potential of an irrotational axisymmetric flow of an
incompressible, inviscid fluid past a slender body of revolution. The given func-
tion @9 is the potential of the incident flow while ®?, the potential due to the
presence of the body, is to be determined. As a consequence of our assumptions,
both ®° and ®® are harmonic functions in the exterior of the body with ®?
vanishing at infinity. On the surface of the body, assumed to be fixed, the normal
derivative of ® must vanish.

It is convenient to introduce cylindrical co-ordinates (r, #, x) with the origin at
the body’s nose and the z-axis along its symmetry axis. Then due to the axial
symmetry of the flow, both ®° and ®” are independent of # and analyticin 72and .
If we use the length of the body as the unit of length, then the body intercepts the
axisatx = 0Oand z = 1. We write its profile curve asr = ¢tR(x) (0 < = < 1), where
et is the slenderness ratio, i.e. the ratio of the maximum radius of the body to its
length. Then max R(x) = 1. For a slender body, such as we shall consider, ¢ is

T

small. We have introduced ¢ into the equation of the profile curve, so that
d2(x, 72, €) will depend upon €. Our objective is to obtain an asymptotic expansion
of ®¢ with respect to € around € = 0.

Let us define S(x) by S(z) = R%(x). Thus 77eS(x) is the cross-sectional area of
the body at z. We shall assume that S(x) vanishes at x =0 and x = 1 and is
analytic in the interval 0 < x < 1. Then it can be expanded in power series about
the end-points as follows

S(x) = 3 c,z*, Sx)= X d,(1—2a)" (2.1)
n=1 n=1
Herec, = 8™(0)/n!and d, = (— 1)»8™(1)/n!. If the radii of curvature of the body
are non-zero at the ends of the body then ¢, and d; are not zero.
We shall attempt to represent ®° as a superposition of point source potentials
distributed along a segment of the x-axis inside the body with the unknown
strength f(x, ¢)/unit length. Thus we write

1 A
q)(zy 7'2,6) = q)o(x’rz)-—zﬁfa(e) [@fighé)ez)f_gﬁj%‘ (2.2)

The constants «(¢) and f#(€), which must be found in addition to f(z, €), satisfy the
inequalities 0 < @ < £ < 1. In terms of the Stokes stream function ¥, related to
Dby ¥, =-7®,and ¥, = r®_, we can rewrite (2.2) as

Ae) (o —
Vet e) = W@ rt)— g [TV EZESBITE (2.3
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In obtaining (2.3) we have used the relation

[freerag=o. (2.4)

This is a consequence of the fact that there is no flow of fluid through the surface
of the body.

Since the axis is a streamline for both the incident and total flows, both ¥® and
¥ are constant on that part of it outside the body. Therfore we may set
Yoz, 0) = ¥(x,0,¢) = 0. Furthermore, since the body is a continuation of the
axial streamline for the total flow, we have Y[z, eS(x),¢] = 0. Upon using this
fact in (2.3), after setting 7% = eR%*x) = eS(x), we obtain

1 (RO (2= E)f(E,0) dE
ol ef(w)} = 47T.L(e) [ 2P+ eS@P° 25)

(2.5) is a linear integral equation from which we shall determine flz,€), ale)
and f(e). Since the left side of (2.5) is analytic in x for 0 < x < 1, f(x, ¢) must be
analytic in its domain of definition, & < # < . We assume that the coefficients
in the expansion of f(z, €) with respect to € can be continued analytically through-
out the interval 0 < x < 1. We shall see that this assumption will enable us to
determine « and £ as power series in ¢ of the form

ale) = XY a,em, (2.6)
n=

AE&) =1— 3 Boen. (2.7)

3. Asymptotic solution of the integral equation

To obtain an asymptotic expansion of the solution f(x, ¢) of (2.5) with respect
to € around € = 0, we first expand each side of (2.5) with respect to ¢, without
taking account of the dependence of f on e. The left side can be expanded as a
power series in ¢ because ¥ is analytic in 72. The right side can be expanded
asymptotically in powers of ¢ and powers of ¢ multiplied by loge, as we shall
show. The coefficients on the right side are linear expressions in f. Then (2.5)
becomes

4 Y Wi(x) Si(x) €l ~f fd§— f fd§+ 67 (L;+logeG) f. (3.1)
i=1
Here L; and G; are linear operators which we shall determine in § 4 and

¥i(x) =J1 (872) o (x, %) 2y - (3.2)

We now differentiate (3.1) with respect to = to take account of the fact that
the derivatives of the integrals are very simple

I ST IS
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Then (3.1) becomes

47 “ J— [P(x) Si(x)] €' ~ 2f(x,€) + efi (L;+logedy) f. (3.4)
i=1 i1 da
To solve (3.4) we seek an asymptotic solution for f of the form
o n-1
f@e) ~ T3 c"(0ge)" funf). (3.5)

Here the f,,,, () are functions of x to be determined. Upon inserting (3.5) into (3.4)
we obtain

4] d o fu—] o n—1 o
7 ¥ I (F,8%)er ~23 Y erloge)f,.(x)+ X & ¥ etrloge)
n=1 &L n=1m=0 nelme 0j=1

d

xii:—lt (Lj+10g€Gj)fnm(x)' (36)

We now equate coeflicients of ¢*(log €)™ on the two sides of (3.6) and obtain the
following system of equations:

d
fro = 27 = (¥,8), (3.7)
n~1
=2 L @52 g ) s, (3:9)
dx ) d -
flm =0 (m>1), (3:9)
n_l d n-ld
fnm = B |:] Id L fn —j,m + Z ijn——j,m—])] (n z2.m2 1)- (310)
We see from (3.7)—(3.10) that the fmn can be determined recursively. Thus once

the L; and @; are evaluated, (3.7)—(3.10) will yield the f,,, and (3.5) will be the
asymptotic expansion of the solution.

Once f(z, €) is found, we can use it to compute the dipole moment u(¢) of the
source distribution, defined by

£
Jle) = —%fﬁ xf(x, €) dz. (3.11)

By using (3.5) in (3.11) and then expanding the resulting integrals in Taylor
series with respect to €, which occurs only in the limits of integration, we obtain

1 = s$—i—-1s-1 es(log €)™ di Be)
e TR T st & w d . 3.12
/I,(G) 477 s:l 7}:0 j:O ]‘ ded [fa(ﬁ) xf.s—],m(x) x]c:ﬂ ( )

Simitarly, by using the expansion (3.5) for f in (2.2), we obtain the following
asymptotic expansion of @:
e PO fum(€) dE
O(x,7%,€) ~ O%x,7%) —— 3 e(lo f S = 3.13
We can replace the integrals which appear in (3.13) by their Taylor series with

respect to e. The resulting asymptotic expansion of @, however, is no longer
uniformly valid at the stagnation points. This non-uniform expansion is given by

. 1 »sitlsles(loge)™ dJ [ [Fl© f £)d§ ]
2 ~ 0 2y __ T R et el s—7s m
B 7€) ~ D, 7% 47Ts§1 mZ:O j§0 J! dej[ a(e) (X — g) +72]% =0 (3.14)
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4. Asymptotic expansion of the integral operator

We shall now evaluate asymptotically in €, around € = 0, the integral operator
in the integral equation (2.5). Let us denote by I(z, €) the integral operator applied
to a function F(x) which is independent of e

I(z,6) = f 1o _FE)@—§)ds | (4.1)

ae) [(x—£)* +eS(x)]?
We assume that a(e) and f(¢) are given by the power series (2.6) and (2.7) with
given coefficients o, and £,,. These coefficients will be determined later.
We begin by adding and subtracting integrals to (4.1) to obtain

e = [ s [ roaes [P0 (g )

+fﬂF(§){ (z—§) +1} dE. (4.2)
z [(x—£)*+eS(x)}

In the third integral on the right side of (4.2) we set £ — & = v and in the fourth
integral we set { —« = v. We then obtain

I, €) = x( Fe)dE- f " P&y dE+ Wiz, 6)+ V(w,6). (4.3)

Here Wz, e) = fr_a F(x—v) {v(v®+e8)t -1} dv, (4.4)
0

Viz,€) = —J‘ﬂHIF(x+v) {v(v?+eS)~1 -1} dv. (4.5)
0

To find the asymptotic expansion of W and V, we are tempted to use in (4.4)
and (4.5), the binomial expansion

v koS i-1= 3 (Z) 0 = (<A GHi- DL (60
However, this expansion is not valid throughout the domains of integration since
these domains include v = 0. Therefore we proceed in a different way. To F(x + v)
in the integrand of (4.5), we add and subtract the two leading terms in its Taylor
series about v = 0. To v[v2+¢eS]~% — 1, we add and subtract the leading term of
its binomial expansion. In this manner we obtain

—V(x,¢) x)f (w2 +eS]t—1)dv+ F'(x )f v([v2+eSTt—1)dv
0

+aleSJ‘ﬂ« [F(x+v) ZFO) vf/]] v2dv
0

j=0

Az 1 1 3
+f {v[vz+eS]—%— Y a; (ES) } [F(x+v) 2 ] z)o)y! ] dv. (4.7)
0 j= =0 !

The last two integrals in (4.7) are finite because F'(x +v) — F(z) — F'(x)v = O(v?)
The first two integrals can be evaluated explicitly. The third contains € only in
B(e) in the upper limit and can be expanded in powers of € merely by successive
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differentiation and the use of the Taylor series. The fourth integral is the
remainder. In (A 4) and (A 7) of appendix A it is shown that the first two integrals
are O(e?) and O(elog ) respectively. The third term is O(¢) since it contains € as
a factor. An analysis of the fourth integral by the method of appendix A shows
that it is O(e?), so that it is actually asymptotically negligible compared to the
first three terms.

The foregoing procedure can now be applied to the fourth integral in (4.7).
Thus to the first factor of the integrand we add and subtract the second term in
the binomial expansion (4.6). To the second factor we add and subtract the next
two terms of the Taylor expansion of F(x+ v) about » = 0. In this way we obtain
a sum of integrals some of which can be evaluated explicitly, others of which can
be expanded easily in power series in € and a remainder which is asymptotically
smaller than all these terms. The whole procedure can be re-applied to the new
remainder, and this can be done repeatedly. In this way we can express V(x,¢€) as
a series of integrals which are of increasing order in ¢, i.e. which are successively
smaller for ¢ tending to zero. Exactly the same analysis can be applied to W(z, €).
In this way we obtain

W(x,e)+ Vize) = % a, 8™(x)e™{H,(x, e)—ﬁn(x, €)}
n=1

w© F(zn) x - @ F(2n+1)(x)

' {P Pn(x: 6)} —n=0 —(m {Kn(xa 6) + Kn(x7 6)} (48)

nl(

Here H,, F, and K, are defined by

H(w,¢) = f :ﬁav—zn {F(x v)—:lF (’)](!) }dv, (4.9)
P(z,€) = f :_ pin {v[vz+68] 3 E a; (‘;S) }dv, (4.10)

K, (x,€) =J‘:ﬁ p2ntl {1;[172+68] i E a; (68) }dv (ag=1). (4.11)

The functions H,, P, and K, are defined by (4.9), (4.10) and (4.11) respectively
with  — a replaced by f—=.

To obtain the asymptotic expansion of W + ¥ we must expand asymptotically
the integrals (4.9)—(4.11). This is done in appendix B by evaluating (4.10) and
(4.11) explicitly and then expanding the resulting functions, other than et and
log e, in power series in €. The integral (4.9) is expanded directly as a Taylor series
in € about ¢ = 0. In these calculations it is helpful to use the results of appendix A,
(A 4) and (A7), which show that P, = O(e**?), K, = O(e"*'loge) and the same
for P, and K. Upon forming the difference P, — P,,, which occurs in (4.8), we find
that the fractional powers of ¢ cancel. Then, upon using the results of appendix B
in (4.8), we obtain the following asymptotic expansion for W+ V

W(x,e)+ V(x,e) = e"[L +loge@,] F(x). (4.12)

r=
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Here L, and G, are linear operators defined by the following equations:

L,F = % {F’(x)S(x) [log (Mgl(;)x)) - 1] +F(x) [%i) _*is%]

+8 [f o {F(x+v)— F(x)— F'(x)v}v-2dv

f {F(x—v) z)+F'(x v}v“zdv]} (4.13)
g éﬂ @n ﬁ)v%)—;:—l {9r—iton, i = Grilon, }
+ _llé F:m() ) 3 na f) n 1{ B+ r—i ~ Lo, r—s}
:lhil :io ((2 ni)]ll; ?;En)) mj . (227;:11—_2;7 ) {Gr—icitotn-g,i— Frizjbotn—p,i}

F(x) [gr - §r+ &= 131-]
) (hr—n—l + Er—n—l)

r—2 ( _S)n+1F(2n+l)(x) n (27’L+ 1—2m

. (2n+1)! m=0 \2n+2—2m
=1 (2r —1—2m\ F&-1(z) 42(1 —x)
—(— 8y
( )mI_IO( 5 —2m ) @@= { S(@) }
r—1 7r F(2n+1)( )
_ngl EO (27’L+ 1) ' 2(n+ 1) [gr 1t2n+1 +gr 1t2n+1 1]
r—1 n a: SJF(2n+1)( ) .
——n§1 1§0 ?IL ] T 1) (2n+ 1) [ An—j+1),7—j + tz(n—-j+1),r—j]
F@)[r .
- ) E (gr— tl z+gr— 1, z) t2,7'_ t2,1‘
2 1=0
r—1 g‘ r—j ( S) F(2n+1)( ) J on+3—2m
;1]“‘ £02m+1) Cn+ 1), (2n+2—2m)

X Gricjbotnpin, s + Frizjlotnospirr, s)

- é n S @ {f‘t"a [F(x — /U) — 27§1 F*,O)(ij)‘l‘ﬂ]] v—2n do
0 !

et (7 — n)' der—n

i=0
A—x 2n—1 (J)
__fo [F(w+v) 20 F ;') ] —2n dv: (r = 2), (4.14)
J : =0
7‘F'(21'—1)( )r——l 9 __1_2

The functions gy, i, t;, £, b, and &y, in (4.14) are defined by (B 10)—(B 17). These
functions have been eliminated from (4.13) by means of these definitions.

5. Determination of a(e) and B(e)

We now turn to the determination of a(¢) and f(¢). Since S(x) is analytic for
0 € x < 1, (3.7) shows that f;,(x) is also analytic in that interval. It then follows
from the recursive nature of the system (3.7)—(3.10) that £, (x) will be analytic
for 0 € z < 1if L, F(z) and G, F () are analytic when F(x) is, provided neither
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¢, nor d, is zero. We see from (4.13)—(4.15) that L, F and @, F involve integrals
and derlva.tlves of F multiplied by the functions g,(x), §,(z), h.(z), b(x), t; ;(x) and
t,;(x). The t;; and #;; are polynomials in z and are therefore analytic. We shall now
examine the analyticity of g, Jr» by and k.
The functions g,(z) are defined in (B 9) as the coefficients in the expansion in
powers of ¢ of the function g(xz,€) = [w(x, €)]t where w(z, €) is defined by
w(x, €) = [x—a(e)]?+ eS(x). (5.1)

Thus they depend upon the coefficients «, in the expansion of «(g). They are
singular at = 0 except for certain values of a,. To see this let us examine the
first few g, (x), which are

go(@) =2, gi(x) = S(x)xtay, gy(x) = lafr! — 2, — (35— oy x)*a~?],
95(®) = —ag+ oy opxt+ §(38 — 220 — (IS — oy 7) (af — 205 2) 273, (5.2)
The function g,(x) is obviously regular and so is g,(x) because S(0) = 0. By using

the expansion (2.1) of S(z) about = = 0, we can separate g,(x) and g,(x) into
singular and regular parts, the latter denoted by y,(z) and y,(x):

g2(x) = x7Had — (¢, — 01)2} + ¥,(2), (5.3)
g3(®) = $x7{(de, — 0y)? ~ (Je; — ) af}
+3x{agc + 30,05 + 5600 — Fo,cp04 1+ v5(x).  (5.4)

The singular term in (5.3) vanishes if we choose for «, the value

a, = 3Cq. (5.5)
When o, has this value the £~2 term in (5.4) vanishes. The z~! in (5.4) can be
eliminated by setting tg = — 56164 (5.6)

By making the functions g,(z) regular at x = 0 we can determine the further
terms in the expansion of a(¢). In this way we find
af€) = }o1€— 701 Co€% + 7€ (¢} c5 + 20 ¢3)

— zhget(cioy + Tefeacy + 5y 3) + O(6°). (5.7)

In a similar way, by making the §,(x) regular at x = 1, we obtain
Ble) = 1—3de+%d, dye? — F5e¥(did, + 2d, d2)

+lged(d3d, + Td2d,d, + 5d, d3) + O(ed). (5.8)
The results (5.7) and (5.8) agree with those of Moran (1963), obtained in a some-
what more complicated way.

To prove that all the g,(x) can be made regular at x = 0 by appropriate choice
of a;, it is convenient to express the g, in terms of ¢g%®)(z, €) = d*g(x, €)/oe* by the
relation g,(x) = g®(x, 0)/k!. Then g, (x) will be regular at x = 0 if g®(z, 0) is. Now
we can readily compute the first few g®(x, ¢) and observe that they are given by
the following recursive formula, which we can then prove by induction,

k-1
g® = w®2wt + wt ¥ ay,;0% g0 (k> 1). (5.9)
i=1
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Here the a,,; are some constants and w® = ¢%w/de*. From the definition of w we

have k—

wh(x,0) = — 2kl + k! 2 o
Jas}

In addition wi(x,0) = x. By using this together with (5.10) in (5.9), and setting

€ = 0, we obtain

1
(@, 0) = — Kl + z ['“ s + G gz, 0) g, 0)

1S ()
T
For k = 1 the sum in (5.11) is vacuous and ¢g‘%(x, 0) is regular at « = 0. For
k > 1, ¢®(x,0) will be regular if the sum in (5.11) vanishes at & = 0. Setting the
sum equal to zero at « = 0 yields an equation which we can solve for «;
provided «, # 0, with the result
thr == | Z Gt T gt N0.0g90.0)| (k> 2. (.12
Thus if &, #+ 0, and if the g9(«,0) with j = 1,...,k—1 are regular at x = 0, it
follows that g®(x,0) is also regular there provided «, is given by the finite
expression (5.12). Since gV(x, 0) is regular, we conclude by induction that all the
g%}, 0) can be made regular at x = 0 by using (5.12) to determine the «; recur-
sively. A similar analysis shows that the §,(x) can be made regular at x = 1 by
choosing the £, appropriately.
If 2, = 0, which is the case if ¢, = 0, then all the g,(x) are regular at x = 0 if
a(€) = 0. To show this we note that when ¢; = 0 and « = 0, w is given by

a;+0,8x) (k> 1) (5.10)

—]7

(k>1). (5.11)

w(x,e) = 22+ eS(x) = 22 +¢ X ¢, a". (5.13)
n=2

Thus g(z, €) is given by .
glx.e) =wt =x [1 +¢e 3 cnx"‘z]g. (5.14)
n=2
It follows from (5.14) that all the g,(x) are regular at & = 0, which proves that
a(e) = 0. If d, = 0it follows in the same Way that all the §,(x) areregularatxz = 1
provided f(e) = 0. When ¢, = 0, the f,,.(x) are not analytic at x = 0 and when
d, = 0, they are not analytic at x = 1.

The functions &, (z) are defined in terms of the square root in (5.1). Once the
a,, are chosen to make the g, (z) regular, it follows that the %, (x) are also regular.
Similarly, the %,(x) are regular if the §,(x) are. Therefore, once «, and f,are
determined to make g,(x) and §,(x) regular, it follows that L_F(x) and G, F(x) are
analytic whenever F(z) is. Thus, the f,,,(z) are analytic for 0 < x < 1.

6. Body in a uniform stream

Let us now apply our results to the case of a body moving with speed — U along
its axis in a fluid at rest at infinity. In a co-ordinate system in which the body is
at rest, the fluid has the velocity U at infinity parallel to the axis and the incident
stream function is Wox,7%) = $Ur2 The coefficients ¥,(x), which are the
coefficients in the expansion of ¥ in powers of 7%, are

V@) =40, Wi@)=0 (52>2). (6.1)
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We insert these coefficients into (3.7)-(3.10) together with the expressions
(4.13)—(4.15) defining L; and G;. Then we use these equations to calculate the
following five f,,,(x)
frolz) = 7US (), (6.2)

1d 7 AN
[ulz) = _53‘01]010 1 U~ :SE;E}’
v?
d

S 88 -
fuol®) = =5 7 Lnfio = 5 o, siog [ 7o)

(6.3)

+Sf01‘z [8'(z+v)—8'(x) — 8" (x)v] v2dv
- sz [8' (@ — v) — §' () + 8" () 0] v~2dv} (6.4
0

1d md da? [ d=:8
foo= =gy Hifu = 16@180172(8@)}’ (6:5)

=Yg on - () (55

- fome () )

+ Sf: [far(x — v) — foy(®) + fr(x) v]v~2dw

11—z
—Sf [flz(x-i-v)—f21—f2'10]v*2dv}. (6.6)
0

To make the expression for f,, more explicit, we may insert the preceding expres-
sions into it. When (6.2)—(6.6) are used in (3.5) they yield the expansion for the
source distribution f(z, €) up to O(e3). The first three of these terms were obtained
by Moran (1963). His expression for f,, involves an infinite series, rather than the
integrals in (6.4), to which the series is equal.

As an application of the results (6.2)—(6.6) we can compute the dipole moment
u of the source distribution, given by (2.12). From the dipole moment we can find
the added or virtual mass M of the body by using Taylor’s (1928) formula

M = dmpuU-1—pV. (6.7)

Here p is the density of the fluid and V is the volume of the body. By using
(6.2)~(6.6), (3.12) and (6.7) we obtain

2 1 1 ’ -
pIM = —;ﬂezlogej- [S'(x)]*dx + e (J- 88" _ 88 +88" — 88" log 42(1 —x)
oll—x =« S

+ Sf [S'(x—v)—8'(x)+8"(x)v]v2dv
0

_s fu [S' (@ +v) — 8" (z) — §"(2) ] v‘zdv}dx _ d%)

0

—-e3 loge)zf S’d 5 (88")dz + O(e®loge). (6.8)
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7. Slender body approaching an obstacle

We now consider the flow which results when a slender body moves along its
axis toward or away from a stationary obstacle which is symmetric about the
same axis. Let D denote the domain exterior to the obstacle and let = denote the
obstacle surface. We introduce the same cylindrical co-ordinate gystem as before
and we denote the velocity of the body along the axis by — U. To express the
potential of the flow by an axial source distribution, we shall utilize the Neumann
function N(z, 72, £) for the domain D. This is a function harmonic in D, except at
the point z = &, r = 0 where it has the singularity of a point source; it vanishes at
infinity and has a vanishing normal derivative on . It can be written as

N(x,r%,£) = yn (@ —£)* +r2]H + N (x, 2, ). (7.1)

Here I is the regular harmonic part of N, which depends upon the distance
between the moving body and the fixed object because the origin of co-ordinates
is at the nose of the body.

In terms of N we write @ in the form

A A
oo = o [ fEa@—premddes o [ g0 R pae 1)

This expression is harmonic outside the body; has vanishing normal derivative on
2 and vanishes at infinity. Upon requiring that its normal derivative on the body
equal the normal velocity of the body we obtain

2nUeS’ (x) =J.ﬂf(§,6){68( Y—3(x—§)eS' (x }dg
. [@—£)*+ eS(a) Tt

oN oN
+€J.a ! ; )ax ZS(x)a—ﬂ}rz=ES(I)f(€,6)dg. (7.3)

This is a linear integral equation for the determination of f(z, €).
We now integrate (7.3) with respect to x from 0 to x and use (2.4) to obtain

4 d
[{xgeTieé%%“ f& e) T(x, &, ) dE. (7.4)
Here we have introduced I'(x, £, ¢) which is defined by

z (8 N 2 2

Since N is a harmonic function it follows that I is a regular function of ¢ which we
can expand in a Taylor series

27UeS(x) =

de. (7.5)

1 o
J'@e]

L(x,§,6) = X Iz, 8)¢’, T;= L@, £, €)|eo- (7.6)

u'M 8

J

The functions I';(x, £) are analytic functionsof z for 0 <o < land x < £ < 4.
Upon using (7.6) in (7.4) we obtain

A d
2nUeS = J. %_}_ > GJJ. f&,e)Ty(x, ) dE. (7.7)
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The integral operators in the sum in (7.7) can be expanded in Taylor series with
respect to ¢, which occurs only in the limits of integration. Then this operator,
when applied to a function F(z) independent of €, can be written as

Ale)

L'Ms

Lyw, HFEE = 3 €Q,F. (1.8)

J a(e)

The operators ¢,, which are independent of e, are defined by

oF =5 L2 ["r, wor@] 79
= o, . .
~0P [361’ ae) | =0 (7.9)
The first integral in (7.7) has been analysed already and can be written as
shown on the right side of (3.1). Upon using that result and (7.8) in (7.7), and then
differentiating with respect to x, we obtain

2nUeS (x) ~ 2f(x,€) + 2 e’i(L +@;+G;loge)f. (7.10)

This equation is the same as (3.4) with L, replaced by L,;+@;, ¥, = U and
¥'; = 0for j > 1. Therefore we seek an asymptotic solution for f(z, €) of the same
form (3.5). We again obtain for the coefficients f,,(x) the equations (3.7)-(3.10)
with these same replacements.

It follows from these equations that f,, f,; and f,, are given by (6.2), (6.3) and
(6.5) and are therefore unaffected by the obstacle. All the other f,, will be
modified. For example, f,, is given by the right side of (6.4) plus an additional
term which we will call f5. It is

= —%(—ng—v :I‘l(x,v)S’(v)dv. (7.11)
Once the f,,, have been found, (7.2) yields ® and (3.12) yields the asymptotic
expansion of the dipole moment of the body. The asymptotic expansion of ® is
of the form (3.13) with }7—1[(x — £)2+r2]~% replaced by N(z, 72, £).

To find the force F on the body, which is along the axis, we use the Bernoulli
equation for the pressure to obtain

F = ﬂepfl [®,+ L(VD)?] 8 (x) . (7.12)
0

Since @ is proportional to the velocity U, @, contains a term proportional to the
acceleration U,. The coefficient of U in the expression for ¥ is the added mass M
given by

M= 45’?—] ' Dz, eS(x),e] S'(z) dz
4U S’ fffe{[x £)2+eS(x)] 2+ N(x,e8, &)} dEdx.  (7.13)

In obtaining (7.13) we have used (7.2) and taken account of the rate of change of
the distance between the moving body and the fixed object.
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To evaluate the  integral of the first term in the second integrand, we add and
subtract 2(x — £) and integrate to get

lf o' (2) [(2— £)* + 8] = %—é—%fl (&) [([@—£)2+eS]H da.
0

4]0
(7.14)
Now we multiply (7.14) by f(£) and integrate with respect to £, obtaining

s 8
ifjfolf(é) eS' (x) [(x— £)2+eS]tda dE = %f f(&) dg_fa Ef(E) dE
[ e £ £)?+eS)1tdwdg. (7.15
ﬂﬁfafof()(x_ JE—g)i+e xdg.  (7.15)

The first integral on the right vanishes, the second is 47 and the last can be
found by integrating the integral equation (7.4) from 0 to 1 with respect to .
Then using (7.5), (7.15) becomes

B
ifa folf(é) eS'(x) [(x — £)+ S tda df = dnp— VU
e’ S'oN _ oN
+5 ] faf(g)(l—x){ga__zggﬁ

Upon using (7.16) in (7.13) we obtain

; dfdz. (7.16)
r?=eS(x)

B 1 v N

M = dmpU-1—pV + P f(g)f {NS’+(1—x)[S'§—zY—4Sg— de dE.
4U a 0 ox

17)

We shall now assume that ¥ can be represented as a superposition of potentials
due to point sources distributed along the axis of the obstacle, and inside it, with
density p(£,%). Thus

1
N6 = o [ penla—nt+reta. (7.18)
Y
Then (7.17) becomes

p B p) 1
M = amopt=—pV 4o [ 10 [ ptn) [ o npe e
a Y

+ (1 —2)(—eS'[x—7]+2e8) [(x— )%+ e8]} dxdndf. (7.19)
We now add and subtract 2(1 — ) (x— 9)2[(x— )2+ eS)~# to the last term in the
integrand in (7.19). Then we can write the « integral in (7.19) as follows, and
integrate the last term by parts, cancel terms and integrate again. In this way we
obtain upon taking account of the fact that 9 < 0,

or® } r2=eS(x)

fol {eS'[(x—n)2+eS1 4+ 2(1 —2) [eS+ (x—9)?] [(x— 7)2+e8]-%
1 +(1—-2) (z—17) (68 — 20+ 2q) [(&— 7)*+ ST H do
= fo [68"+2(1 —2)][(x — 7)2 +eS]- da + [2(1 —z) (x— ) [(x —9)% + €S-}

- f 01 [2(1 — ) — 22— )] [(z— 1)+ e8]+ da,

N f: [68 +2(x — )] [(@ — 7)2 +eS) ¥ dz — 2,

= 2[(@— 1) +eSHi—2 = 2(1—9)+ 292,

-0 (7.20)
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Now (7.19) becomes M = dmpuU-1—pV. (7.21)
This is the same as Taylor’s formula (6.7) with x the dipole moment of the source
distribution inside the body, which is no longer equal to the dipole strength of
the flow far from the body and obstacle.*

As an example of the above results, let us suppose the obstacle is the plane
x = —a. Then the method of images yields

Nz, 72, £) = [(x+ £+ 2a)2 +r2] L. (7.22)
From (7.5) and (7.22) we find
(x+£&+2a) o
F(xy ga 6) = [(x+g+2a)2+628]%_ (7.u3)

For a > 0 and € small, we expand (7.23) by the binomial theorem and find that
(7.6) holds with
_ Si(z)
NS By 2

The binomial coefficients a; are given by (4.6). By using I'; in (7.11) we obtain

fzo:%];x{ )f x+v+2a} (7.25)

The corresponding addition to the dipole moment, which we denote by us, is

1 [t S
+ + = 2
M0 = 4ﬂf0 xfah(x) dx = f f @To+2a) dvdz. (7.26)

(j=12..). (7.24)

From (6.7) we see that this term in the dipole moment contributes a term
M3, = 4mufy U-1to the virtual mass. If the plane obstacle represents a free surface
on which ® = 0, the results (7.22)—(7.26) all hold provided the right sides are
multiplied by — 1.

The research in this paper was supported by the National Science Foundation
under grant no. GP 3668.

Appendix A. Asymptotic estimates of P, and K,
We shall now estimate the functions P,(z, ¢) and K ,(z, €), defined by (4.10) and

(4.11), for small values of e. In (4.10) we introduce the integration variable
u = (8)~% v and (4.10) becomes

(x—a)(eS)"t n
P (z,¢) = (eS)"’“%f u2n [u(l +u?)~t— 3 a,-u"z"] du. (A1)
0 j=0
The integrand is of one sign for all values of # > 0 and is O(#~2?) as % becomes
infinite. Therefore the right side of (A 1) is increased in magnitude if the upper
limit is replaced by infinity and the resulting integral converges. Thus we con-
clude from (A 1) that for all z > « and ¢ small,

P, (z,¢) = O(e™tt). (A 2)

* [Note added in proof.] Equation (7.21) is a special case of the generalized Taylor
formula given by Landweber & Yih (1956).
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The same change of variable in (4.11) yields

(z—a)(eS)~ 7
K, (x,€) = (eS)"‘Flf y2ntl [u(l +u?)~t— i a,-u‘zf] du. (A 3)
0

=0
The integrand in (A 3) is also of one sign and behaves like a, ;%1 as  becomes
infinite. Thus by splitting the integral at © =1 and adding and subtracting
@, 1% to the second integral we can write (A 3) as

K, (x,¢) = (eS)"“fl

yntl [u( 1+ 42)~ i a; u—zj] du
0 .

=0
(x—a)(eS)}
+(eS)n+1f
1
(z—a)(es)~t
+ (GS)"‘Hf Gy ¥ du (A 4)

1

n+1
g2ntl [u( 1+ u?)—%— .20 a; u—zf] du
i=

The first integral is dependent of €, the second is less in magnitude than the
corresponding finite integral with upper limit infinity and the last integral is
O(loge). Thus (A 4) yields

K, (x,€) = O(e™*loge). (A B)
The result (A 2) also holds for P, and (A 5) holds for K, as we see from their
definitions.

Appendix B. Asymptotic expansion of K,,, P, and H,

To expand the integrals K, and F, asymptotically for ¢ small we first evaluate
them by using the following relations

r—a d
fo (0—2%@=log{(x——oc)+((x~oc)2+eS)%}—-%log(eS), (B1)
r—a d
[ s = e o= @)L (B2)
T I (0 22 S s | B e
[ =0 e [ ey (B9

By using (B 1)-(B 3) in (4.10) and (4.11) we obtain

Ko(x,e) = H{(x—a)?+eSTE (x—a) — (x — )2 — eSlog (¢ — a + [(x — a)2 + eS]})
+46Slog (e8)}, (B4)

(—68)y (x—aq)Xn—i+l J (2n +3— Qm) (x— a)znﬂ;

K, (w,¢) = [(x—a>2+eS]%{ 3

F=1 W m=1 2n+2—-2m 2(n+1)
oz ; (x — o)+ w1 1y (2n+1-2m
2 S gty () mf-_lo(zn+2—27n)
x[log (@ —a+[(x—x)?+eSTF)—Llog(eS)], n=1; (B5)
Fy=[(x~a)2+eSPE—(eS) - (2 —a), (B 6)
—a)r  n(—eSY(r--a)¥D i (2p 42— 2m
P = —a)24¢ %(x “) ﬁL___,‘¥ -~ - 77
w = le—a)'+eS] =2n+1 NP R y el § O ey e
n (@ — a1 (gS)ntl(— 1)n+l n (2n+2—2m
~ Y oa. ez AT e Am
P LTy @r+D)  m 2n+1—2m)’ nz1 (B7)

By replacing z —a by #—= in (B 4)~(B 7) we obtain K, and P,.
10 Fluid Mech. 28
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To expand these results asymptotically in ¢ we must first consider the
functions g, & and ¢; defined by

9z, ¢) = [(w—a)y+eST, hiz,c) = log(v—a+[(@—a)+eSH, tw,6) = (@—a).

These functions have power series in € given by (B 8)
1 d*
90,0) = 3 @)k, @) = g zzl@—aP+eStl,  (BY)

-0
o) k
h(z,€) = log 2x -+ 2 W2 €5, Rhy(z) = kiYZi%]Og [x—c+g(x,€)]|,m9, (B10)

ti(w,6) = % birl) €X. (B11)
k=0

In (B11)the functions ¢ ;(x) are obtained by inserting the expansion for «(€) given
by (2.6) into (x — ) and collecting terms in powers of e.

We define the functions §,% and {; by replacing # —a by #— z in the definitions
(B 8). Then these functions have power series expansions in € with coefficients §,,
%, and %, which are given by making the same replacement in the expressions
for g;,, h;, and £y,

By using these power series in (B 4)—(B7), taking account of the estimates
(A 2) and (A 5), and using the corresponding results for K, and P, we obtain

Ko+ Ko { > E itk (g5t + G tu] - ei[t% + 521']

k=01=0 i=1
i+k>1
— Sellog M}+ S €A, + k] —loge } (B 12)
S(x)
no(=8Y I (2n4+3-2m\ ... -
= i Lo B o
K +K kEO 120:’21 H(n+ 1) mﬂl <2n+ 2 _9n ) € [gk tz(n—J)+1,z+ 9Ix 2(n—])+1,1]
i+i+kzn+l
citk I
+k20 120 3mt1) [9rtoni1,+ Tr bonta, i)
itk>n+1

© n a,Se

tot iy s botr 1) ¢
P 02(’” ‘9+1)[2(n 7+, 2(n J+l),z]

i+izn+l 1o (1 —2)
n n+1-—2m x(l —x
. n+1 PR n+1
(=8 I (2n+2—2m) [e IOg{ S }
+ 2] el+n+k(h, + h,) — e log e] , (B13)
k=
Py— Py = kEI €(g5 — Gr) + ’El (o — B) €%, (B 14)
- © © €i+k .
F,~-F = IEO ;240 In+1 [9xton,: — Tk ban, ]
itk=n+1
© 2 n(=8yetitk i (9n 42— 2m
3 Aol ibH S — G 1.
+k:0 i§0 jgl (27L+ 1) a1 (2n+ 1- ) [gk An—,1 gk An—7, z]
i+i+h=n+1
© n gitig Y .
- '§0 .‘éo 2( JJ)+ 1 [tz(n—-])+1 i tz(n—:i)+1,i]’ nz 1l (B 15)
;;J‘)Zz:—l
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No terms which involve half integer powers of ¢ appear in (B 14) and (B 15) since
they cancel when P, — P,, is formed.

To expand H,(x,€) and a (%, €) defined by (4.9), we use its Taylor series and
obtain

_ o ok Jk r—a 2n—-1 F(j)(.’li)’l)j
— = N —2n —_ _ ¥ 7
H, (x,e)— H,(x,€) k:Ok!dek{fO v [F(x v) PR ]dv
p-x 2n—1 JG) 7]
_f U‘Z"[F(x+v)— > M]dv}. (B 16)
0 =0 J°
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