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Axially symmetric potential flow around a slender body 
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Axially symmetric potential flow about an axially symmetric rigid body is 
considered. The potential due to the body is represented as a superposition of 
potentials of point sources distributed along a segment ofthe axis inside the body. 
The source strength distribution satisfies a linear integral equation. A complete 
uniform asymptotic expansion of its solution is obtained with respect to the 
slenderness ratio e*, which is the maximum radius of the body divided by its 
length. The expansion contains integral powers of e multiplied by powers of log c. 
From it expansions of the potential, the virtual mass and the dipole moment of 
the body are obtained. The flow about the body in the presence of an axially 
symmetric stationary obstacle is also determined. The method of analysis 
involves a technique for the asymptotic solution of integral equations. 

1. Introduction 
Suppose an axially symmetric rigid body moves along its axis in an incompres- 

sible inviscid fluid at rest a t  infinity. The resulting irrotational motion of the fluid 
is an axially symmetric potential flow. We shall represent its potential @ as 
a superposition of potentials of point sources distributed along a segment of the 
axis inside the body. Then the boundary condition on the surface of the body will 
lead to a linear integral equation for the source strength distribution. By using 
a special technique, we shall obtain a complete uniform asymptotic expansion of 
the solution of this integral equation with respect to the parameter e, which is the 
square of the ratio of the maximum radius of the body to its length. From the 
solution we shall obtain asymptotic expansions of (3, of the virtual mass M and of 
the dipole moment p of the body. In addition we shall consider an arbitrary 
axially symmetric flow incident on the body and also the case when another 
stationary axially symmetric body is present. 

Potential flow past an axially symmetric slender body has been studied 
extensively since the work of Munk (1  924). This study is now part of slender body 
theory, which is the theory of any type of flow past a slender body. It is discussed 
in detail, together with the relevant references, in various books, e.g. Thwaites 
(1960). Apparently only the first two terms in the expansion with respect to the 
slenderness ratio € 4  had been determined before the work of Moran (1963), who 
obtained the third term for the axially symmetric case but was unable to go 
further. We shall obtain the complete expansion in this case. In  doing so, like 
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Moran, we shall use Landweber's (1951) idea that the source strength vanishes in 
an interval near each end of the body. The determination of the lengths of these 
intervals is part of the problem. We shall also assume that the profile curve of the 
body is analytic. 

Our method for obtaining the asymptotic expansion of the solution of the 
integral equation may be of interest in itself because it seems to be applicable to 
other equations. 

2. Derivation of the integral equation 
Let @ = @ O +  @b be the potential of an irrotational axisymmetric flow of an 

incompressible, inviscid fluid past a slender body of revolution. The given func- 
tion is the potential of the incident flow while W, the potential due to the 
presence of the body, is to be determined. As a consequence of our assumptions, 
both Qo and ab are harmonic functions in the exterior of the body with Qb 

vanishing at infinity. On the surface of the body, assumed to be fixed, the normal 
derivative of <D must vanish. 

It is convenient to introduce cylindrical co-ordinates ( r ,  6, x) with the origin at 
the body's nose and the x-axis along its symmetry axis. Then due to the axial 
symmetry of the flow, both Qo and Qb are independent of 6 and analytic in r2 and x. 
If we use the length of the body as the unit of length, then the body intercepts the 
axisatx = Oandx = 1. We writeits profile curveasr = dR(x) (0 < x < l ) ,  where 
€4 is the slenderness ratio, i.e. the ratio of the maximum radius of the body to its 
length. Then max R(x) = 1. For a slender body, smh as we shall consider, E is 

small. We have introduced E into the equation of the profile curve, so that 
Wfx, r2, E )  will depend upon E .  Our objective is to  obtain an asymptotic expansion 
of Qb with respect to  e around E = 0. 

Let us define X(x) by X(x) = R2(x). Thus nsX(x) is the cross-sectional area of 
the body at x. We shall assume that S(x) vanishes at x = 0 and x = 1 and is 
analytic in the interval 0 < x < 1. Then it can be expanded in power series about 
the end-points as follows 

X 

co 00 

X(x) = c cnxn, S ( X )  = x d,(l -x),. (2.1) 
n=l n=l 

Here c, = S(n)(O)/n! and dn = ( - l)nS(n)( l) /n!.  If theradii of curvature of the body 
are non-zero at the ends of the body then c, and d, are not zero. 

We shall attempt to represent Qb as a superposition of point source potentials 
distributed along a segment of the x-axis inside the body with the unknown 
strengthf(x, €)/unit length. Thus we write 

The constants a(.) and/?(€), which must be found in addition tof(x, E ) ,  satisfy the 
inequalities 0 < a < /3 < 1. In  terms of the Stokes stream function Y, related to 
Q by Y, = -rQr and Yr = TO,, we can rewrite (2.2) as 
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In obtaining (2.3) we have used the relation 

/ I f ( E ,  4 dk- = 0. (2.4) 

This is a consequence of the fact that there is no flow of fluid through the surface 
of the body. 

Since the axis is a streamline for both the incident and total flows, both Yo and 
Y? are constant on that part of it outside the body, Therfore we may set 
YO(x, 0 )  = Y ( x ,  0, e)  = 0. Furthermore, since the body is a continuation of the 
axial streamline for the total flow, we have Y [ x ,  eS(xf ,  e] = 0. Upon using this 
fact in (2.3), after setting r2 = eR2(x) = eS(x) ,  we obtain 

(2.5) is a linear integral equation from which we shall determine f ( x ,  e ) ,  a(€) 
and P(e). Since the left side of (2.5) is analytic in x for 0 < x < 1, f ( x ,  e )  must be 
analytic in its domain of definition, a < x < p. We assume that the coefficients 
in the expansion off ( x ,  e )  with respect to e can be continued analytically through- 
out the interval 0 < x < 1. We shall see that this assumption will enable us to 
determine a and p as power series in E of the form 

m 

a(€)  = c anen, 

P ( E )  = 1 -  pnen. 

n=l 
co 

n=l 

3. Asymptotic solution of the integral equation 
To obtain an asymptotic expansion of the solution f ( x ,  e )  of (2.5) with respect 

to e around E = 0, we first expand each side of (2.5) with respect to e ,  without 
taking account of the dependence off on e. The left side can be expanded as a 
power series in e because Yo is analytic in r2.  The right side can be expanded 
asymptotically in powers of e and powers of e multiplied by loge, as we shall 
show. The coefficients on the right side are linear expressions in f. Then (2.5) 
becomes 

Here Li and Gi are linear operators which we shall determine in 5 4 and 

We now differentiate (3.1) with respect to x to take account of the fact that 
the derivatives of the integrals are very simple 
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Then (3.1) becomes 
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To solve (3.4) we seek an asymptotic solution for f of the form 
00 11-1 

Here the fnTn(x) are functions of x to be determined. Upon inserting (3.5) into (3.4) 
we obtain 

" d  00 n-1 m n-1 w 

477 2 -- (YnSn)€n - 2 c x En(loge)mfn,n,(x) + x ej+"(loge)" 
n=lnc=O n=l7n=Oi= l  ,,&= 1 dx 

d 
ax x -- (Lj+lOgE Gj)filnL(z). (3.6) 

We now equate coefficients of @(log E ) ~  on the two sides of (3.6) and obtain the 
following system of equations: 

( 3 . 7 )  
d 

f l0  = 2n -& (Y,S), 

We see from (3.7)-(3.10) that thef,, can be determined recursively. Thus once 
the Lj and Gj are evaluated, (3.7)-(3.10) will yield thef,,n and (3.5) will be the 
asymptotic expansion of the solution. 

Once f(x, e )  is found, we can use it to compute the dipole moment /A(€) of the 
source distribution, defined by 

A€) = - - 4n xf(x, 8 )  ax. 1: (3.11) 

By using (3.5) in (3.11) and then expanding the resulting integrals in Taylor 
series with respect to E ,  which occurs only in the limits of integration, we obtain 

Similarly, by using the expansion (3.5) for f in ( 2 . 2 ) ,  we obtain the following 
asymptotic expansion of 0 : 

We can replace the integrals which appear in (3.13) by their Taylor series with 
respect to 6 .  The resulting asymptotic expansion of 0, however, is no longer 
uniformly valid a t  the stagnation points. This non-uniform expansion is given by 
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4. Asymptotic expansion of the integral operator 
We shall now evaluate asymptotically in E ,  around E = 0, the integral operator 

in the integral equation (2 .5) .  Let us denote by I(x, E )  the integral operator applied 
to a function P(x)  which is independent of E 

We assume that a(.) and P(e) are given by the power series (2.6) and (2.7) with 
given coefficients a, and P,. These coefficients will be determined later. 

We begin by adding and subtracting integrals to (4.1) to obtain 

In the third integral on the right side of (4.2) we set x - 5 = v and in the fourth 
integral we set 5- x = v. We then obtain 

(4.3) 

W(x,e)  = P(x-v)  {v(v2+€S)-*- l} dv, (4.4) /:= Here 

V ( x , s )  = - / ~ - x P ( x + v ) { ~ ( v e + € S ) - l -  1)dv. (4.5) 

To find the asymptotic expansion of W and V ,  we are tempted to use in (4.4) 

(2)j - aj ,  a j  = (-1)i(4)(#) ...(&+j- l)/j!. (4.6) 

However, this expansion is not valid throughout the domains of integration since 
these domains include v = 0. Therefore we proceed in a different way. To B(x + v) 
in the integrand of (4.5), we add and subtract the two leading terms in its Taylor 
series about v = 0. To v[v2+eS]-*- 1, we add and subtract the leading term of 
its binomial expansion. In  this manner we obtain 

and (4.5), the binomial expansion 

v(v2+eS)-*-1 = 
j=1 

- V ( x , s )  = P(x)  (v[w2+ES]-*- l )dv+P'(x)  v(v[v2+€:X]-t- 1 )dv  Iob-" so"-" 

The last two integrals in (4.7) are finite becauseP(x + v) - F ( x )  - P'(x) v = O(v2) 
The first two integrals can be evaluated explicitly. The third contains E only in 
P(s)  in the upper limit and can be expanded in powers of e merely by successive 
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differentiation and the use of the Taylor series. The fourth integral is the 
remainder. In  (A 4) and (A 7 )  of appendix A it  is shown that the first two integrals 
are O(e4) and O(e log e) respectively. The third term is O(B) since it contains E as 
a factor. An analysis of the fourth integral by the method of appendix A shows 
that it is O(eg), so that it is actually asymptotically negligible compared to the 
first three terms. 

The foregoing procedure can now be applied to the fourth integral in (4.7). 
Thus to the first factor of the integrand we add and subtract the second term in 
the binomial expansion (4.6). To the second factor we add and subtract the next 
two terms of the Taylor expansion of F ( x  + v )  about v = 0. In  this way we obtain 
a sum of integrals some of which can be evaluated explicitly, others of which can 
be expanded easily in power series in e and a remainder which is asymptotically 
smaller than all these terms. The whole procedure can be re-applied to the new 
remainder, and this can be done repeatedly. In  this way we can express V ( x ,  e) as 
a series of integrals which are of increasing order in E ,  i.e. which are successively 
smaller for e tending to zero. Exactly the same analysis can be applied to W ( x ,  F ) .  

In  this way we obtain 

Here H,, P, and Kn are defined by 

(4.10) 

The fuiictions 8,, Pn and En are defined by (4.9), (4.10) and (4.11) respectively 
with x - a replaced by p - x. 

To obtain the asymptotic expansion of W + V we must expand asymptotically 
the integrals (4.9)-(4.11). This is done in appendix B by evaluating (4.10) and 
(4.11) explicitly and then expanding the resulting functions, other than eB and 
loge, in power series in e. The integral (4.9) is expanded directly as a Taylor series 
in e about E = 0. In  these calculations it is helpful to use the results of appendix A, 
(A4j and (A?), which show that Pn = O(en+4), R, = O(e"+lloge) and the same 
for P, and Z,. Upon forming the difference P, - P,, which occurs in (4.8), we find 
that the fractional powers of e cancel. Then, upon using the results of appendix B 
in (4.8), we obtain the following asymptotic expansion for W + V 

m 
I 

W ( X ,  E )  + V ( S ,  E) = C 8[L, + l0geGr] F(x) .  (4.12) 
r=1 



Axially symmetric potential flow around a slender body 137 

Here Lr and Gr are linear operators defined by the following equations: 

+ S [I l-' { F ( x  + v )  - F ( x )  - F' (x )  v}  r2 dz1 
0 

(4.13) 

The functions gk, SrZ, ti,, i,,, h7, and h, in (4.14) are defined by (B 10)-(B 17). These 
functions have been eliminated from (4.13) by means of these definitions. 

5. Determination of a(€) and @(E) 

We now turn to the determination of a(€) and P(e). Since S ( x )  is analytic for 
0 < x < 1, (3.7) shows thatflo(x) is also analytic in that interval. It then follows 
from the recursive nature of the system (3.7)-(3.10) that fnm(x)  will be analytic 
for 0 < x < 1 if LrF(x) and G r F ( x )  are analytic when F(x )  is, provided neither 
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c1 nor d, is zero. We see from (4.13)-(4.15) that L,F and G,F involve integrals 
and derivatives of F multiplied by the functions g&), &(x), hk(x), hk(x), t i i (x)  end 
Zii(x). The tii and Zii are polynomials in x and are therefore analytic. We shall now 
examine the analyticity of gk ,  g k ,  hk and hk. 

The functions g k ( X )  are defined in (B 9) as the coefficients in the expansion in 
powers of E of the function g(x,E) = [w(x,e)]$ where w(x,e) is defined by 

W(X,€)  = [x-a(€)]2+€:x(x). (5.1) 

Thus they depend upon the coefficients a, in the expansion of a(€). They are 
singular a t  x = 0 except for certain values of a,. To see this let us examine the 
first few gk(x), which are 

g&) = x, gl(x) = +X(z)x-la,, g2(x)  = Q[a?x-l- 2a2- (38- a1x)2x-3],  

g 3 ( x )  = -aa,+ala2x-1+i(fr~- a1x)32-5- ~ ( Q X - ~ , ~ )  2 a 2 x ) x - 3 .  ( 5 .2 )  

The function go(%) is obviously regular and so is gl(x) because S(0) = 0. By using 
the expansion (2.1) of X(x) about x = 0, we can separate g,(x) and g3(x) into 
singular and regular parts, the latter denoted by y2(x)  and y3(x) :  

(5.3) 

+ *x-'{*a2c1+ +Cga;+&C2C;- &,c2a1}+y3(x). (5.4) 

a1 = *C1. (5.5) 

(5.6) 

g2(4 = x-ya; - (4% - ElY} + y214, 

g3(x)  = + X - ~ { ( + C ,  - a1)3 - (2 l c  1-a1)aD 

The singular term in (5.3) vanishes if we choose for a, the value 

When a1 has this value the x-2 term in (5.4) vanishes. The x-l in (5.4) can be 
eliminated by setting 

By making the functions &(x) regular at x = 0 we can determine the further 
terms in the expansion of a(€). In  this way we find 

a ---L 
2 - 16c1cZ. 

a(€) = ~ c , € - & C l C Z € 2 + & € 3 ( C ~ C 3 + 2 C 1 C ~ )  

- _ - 4  Zi6e (clc,+ 3 7 C ; C 2 C s + 5 c 1 C ~ ) + O ( € 5 ) .  (5 .7)  

In a similar way, by making the gk(x) regular at x = 1, we obtain 

P(e)  = 1 - & € + A d  1 6  1 d 2 @-A- 64' 3 (d:d3+2d1dg) 

+&e4(d!d4+ 7d:d2d3+5d,d3 +O(s5) .  (5.8) 

The results (5.7) and (5.8) agree with those of Moran (1963), obtained in a some- 
what more complicated way. 

To prove that all the g k ( X )  can be made regular at z = 0 by appropriate choice 
of a k ,  it is convenient to express the gk in terms of g(k)(x, e )  = akg(z ,  e ) /@ by the 
relation g k ( X )  = g(k)(x, O)/k! .  Then g k ( X )  will be regular at x = O if g(k)(x, 0) is. Now 
we can readily compute the first few g(k)(x, E )  and observe that they are given by 
the following recursive formula, which we can then prove by induction, 
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Here the akj are some constants and w ( ~ )  = akw/ask. From the definition of w we 
have k-1 

W c k ) ( X , O )  = -2k!akx+k!  I; ak+aj+&k18(X)  (k 2 1) .  (5.10) 
j=1 

In addition w*(x,O) = x.  By using this together with (5.10) in (5.9), and setting 
E = 0. we obtain 

For k = 1 the sum in (5.11) is vacuous and g(l)(x, 0 )  is regular at z = 0. For 
k > 1, g(k)(x, 0) will be regular if the sum in (5.11) vanishes at  x = 0. Setting the 
sum equal to zero at x = 0 yields an equation which we can solve for ak-l 
provided a, + 0, with the result 

Thus if a, + 0, and if the gu)(x, 0) with j = 1 , .  .., k -  1 are regular at x = 0, it 
follows that g(k)(x,O) is also regular there provided ak is given by the finite 
expression (5.12). Since g(l)(x, 0 )  is regular, we conclude by induction that all the 
g("(x, 0) can be made regular at x = 0 by using (5.12) to determine the 01.k recur- 
sively. A similar analysis shows that the gk(x) can be made regular a% x = 1 by 
choosing the p k  appropriately. 

If a, = 0, which is the case if c, = 0, then all the gk(x) are regular a t  x = 0 if 
a(€ )  = 0. To show this we note that when c ,  = 0 and a E 0, w is given by 

W 

W ( X , € )  = X 2 + € S ( X )  = r2+e c c,x". (5.13) 

(5.14) 

It follows from (5.14) that all the gk(x) are regular at x = 0,  which proves that 
a(€) 3 0. If d ,  = 0 it follows in the same way that all the gk(x) are regular at x = 1 
provided p(s)  E 0. When c, = 0, the fnm(x)  are not analytic at x = 0 and when 
d, = 0, they are not analytic at x = 1.  

The functions hk(x) are defined in terms of the square root in (5.1). Once the 
a., are chosen to make the gk(x) regular, it  follows that the hk(x)  are also regular. 
Similarly, the &(z) are regular if the gk(x) are. Therefore, once a, and p,are 
determined to make gk(z) and &(x) regular, it  follows that L,F(x) and G,F(x) are 
analytic whenever F ( x )  is. Thus, thef,,(x) are analytic for 0 < II: < I .  

6. Body in a uniform stream 
Let us now apply our results to the case of a body moving with speed - U along 

its axis in a fluid at  rest at  infinity. In  a co-ordinate system in which the body is 
at rest, the fluid has the velocity U at infinity parallel to the axis and the incident 
stream function is Y(J(x , r2)  = $Ur2. The coefficients Y i ( x ) ,  which are the 
coefficients in the expansion of Yo in powers of r2, are 

Y , ( x )  = +u, Y j ( X )  = 0 ( j  >, 2). (6.1) 
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We insert these coefficients into (3.7)-(3.10) together with the expressions 
(4.13)-(4.15) defining Lj and Gi. Then we use these equations to calculate the 
following five fnnL(x) : 

f&) = TufJr(x), (6.2) 

+BIo1-* [Xr(x  + v) - S'(x) - X"(x)v] v-2dv 

[X'(x - v) - X'(x) + S r ( x )  v] r2 dv 

-- d [(Slog ( " 3 1 3 )  -#I%+ (E+) fil 
ax 

- #/:-" [ f12(x + v) - fZl - fk1v] r2 dv)  . (6.6) 

To make the expression for f31 more explicit, we may insert the preceding expres- 
sions into it. When (6.2)-(6.6) are used in (3.5) they yield the expansion for the 
source distribution f(x, E )  up to O(e3). The first three of these terms were obtained 
by Moran (1963). His expression for f i O  involves an infinite series, rather than the 
integrals in (6.4)' to which the series is equal. 

As an application of the results (6.2)-(6.6) we can compute the dipole moment 
p of the source distribution, given by (2.12). From the dipole moment we can find 
the added or virtual mass M of the body by using Taylor's (1928) formula 

M = 4i.rplCU-l-pV. (6.7) 

Here p is the density of the fluid and V is the volume of the body. By using 
(6.2)-(6.6), (3.12) and (6.7) we obtain 

4 4  1 - X) p-1M = - ane210ge [S'(z)l2dx+$ (j: [Ex--- X 
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7. Slender body approaching an obstacle 
We now consider the flow which results when a slender body moves along its 

axis toward or away from a stationary obstacle which is symmetric about the 
same axis. Let D denote the domain exterior to the obstacle and let X denote the 
obstacle surface. We introduce the same cylindrical co-ordinate system as before 
and we denote the velocity of the body along the axis by - U .  To express the 
potential of the flow by an axial source distribution, we shall utilize the Neumann 
function N(x ,  r2, 6 )  for the domain D. This is a function harmonic in D, except at  
the point x = g, r = 0 where it has the singularity of a point source; it vanishes at  
infinity and has a vanishing normal derivative on C. It can be written as 

N(x ,  r2, 6 )  = $n-'[(x - 512 + r21-4 + &n-liV(x, ? ,[I .  (7.1) 

Here fl is the regular harmonic part of N ,  which depends upon the distance 
between the moving body and the fixed object because the origin of co-ordinates 
is at the nose of the body. 

In  terms of N we write CD in the form 

~ ( x , r 2 , e )  = A/:~(E,€)  [(x-5)2+T21--bd5+4n/~f(5,e)~(x,r2,5)a~. 1 B  (7.3) 

This expression is harmonic outside the body; has vanishing normal derivative on 
X and vanishes at infinity. Upon requiring that its normal derivative on the body 
equal the normal velocity of the body we obtain 

E) {€S(X) - &(x - t)  sS'(x)} a t  P', [ (x-  [ ) 2  + €S(X)]h 
2nUeS'(x) = 

This is a linear integral equation for the determination of f ( x ,  e). 
We now integrate (7.3) with respect to x from 0 to x and use (2.4) to obtain 

Here we have introduced F(x, E,  e) which is defined by 

Since 8 is a harmonic function it follows that r is a regular function of 8 which we 
can expand in a Taylor series 

The functions r j ( x , t )  are analytic functions of x for 0 < x < 1 and a < 6 < p. 
Upon using (7.6) in (7.4) we obtain 
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The integral operators in the sum in (7.7) can be expanded in Taylor series with 
respect to e, which occurs only in the limits of integration. Then this operator, 
when applied to a function P(x)  independent of E, can be written as 

The operators Q,, which are independent of e, are defined by 

The first integral in (7.7) has been analysed already and can be written as 
shownon theright sideof (3.1). Uponusing thatresult and (7.8) in (7.7), and then 
differentiating with respect to x, we obtain 

(7.10) 

This equation is the same as (3.4) with Lj replaced by L j + Q j ,  Y1 = &U and 
‘Pi = 0 for j  > 1. Therefore we seek an asymptotic solution for f(x, e) of the same 
form (3.5). We again obtain for the coefficients fnm(x) the equations (3.7)-(3.10) 
with these same replacements. 

It follows from these equations that flo, fZl and fZ2 are given by (6.2), (6.3) and 
(6.5) and are therefore unaffected by the obstacle. All the other f,, will be 
modified. For example, fi0 is given by the right side of (6.4) plus an additional 
term which we will call f&. It is 

(7.11) 

Once thetam have been found, (7.2) yields CD and (3.12) yields the asymptotic 
expansion of the dipole moment of the body. The asymptotic expansion of CD is 
of the form (3.13) with $;.-l[(x - <)2 + ~ ~ 1 - 8  replaced by N ( x ,  r2,  c).  

To find the force F on the body, which is along the axis, we use the Bernoulli 
equation for the pressure to obtain 

(7.12) 

Since CD is proportional to the velocity U, CDl contains a term proportional to the 
acceleration q. The coefficient of L$ in the expression for F is the added mass M 
given by 

1 
M = @[x, cS(x), €1 S(z) dx 

4U 0 

= g/ol S’(x)1: f (<,e){[(x- l )2+sX(x) l - . t -+m(z,eS,6)}d~d, .  (7.13) 

In  obtaining (7.13) we have used (7.2) and taken account of the rate of change of 
the distance between the moving body and the fixed object. 
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To evaluate the x integral of the first term in the second integrand, we add and 
subtract 2(x - g) and integrate to get 

~ I ~ S s ’ ( x ) [ ( 2 - 6 ) Z + S s ] - a d z  = H - 6 - f IO1 (2 - 6 )  [(x - 0 2  + €81-4 ax. 

(7.14) 
Now we multiply (7.14) by f(6) and integrate with respect to 6, obtaining 

The ikst integral on the right vanishes, the second is 4np and the last can be 
found by integrating the integral equation (7.4) from 0 to 1 with respect to x. 
Then using ( 7 4 ,  (7.15) becomes 

Upon using (7.16) in (7.13) we obtain 

(7.17) 
We shall now assume that fl can be represented as a superposition of potentials 

due to point sources distributed along the axis of the obstacle, and inside it, with 
density p(6 ,  7). Thus 

~ ( x , r 2 , t )  = ;j:p(t ,q) [(x-q)2+r21-*dy. (7.18) 

Then ( 7.17) becomes 

M = 4 ~ p , ~ U - l - p V + -  p ) J 8 P ( S j 7 ) S 1  { E w 2 - 7 ) 2 + e 4  

+ (1 - X) ( - ES’[Z - 73 + 2 ~ 8 )  [(z - 7)’ + €81-4) dx d7 d6. 
16nU a Y 0 

(7.19) 
We now add and subtract 2( 1 - x) (x - q ) 2  [(x - y)2 + sS]-4 to the last term in the 
integrand in (7.19). Then we can write the x integral in (7.19) as follows, and 
integrate the last term by parts, cancel terms and integrate again. In  this way we 
obtain upon taking account of the fact that 7 < 0, 

~01{€s”(s-7)2+€s]--t+2(1 -x) [eX+(x-y)2] [(.-7/y+sX]-Q 

+ (1 - x) (2- 7) ( - SX’ - 2x + 27) [(z- 7)2+ €X]-P}dx 

= ~ o 1 [ S s ’ + 2 ( 1 - ~ ) ] [ ( x - 7 ) ~ + € ~ ] - ~ d x + [ 2 ( l - ~ ) ( ~ - 7 ) [ ( ~ - 7 ) ~ + S s J - ~ ~ ~  

-so’ [2(1- x) - 2(x-  r ) ]  [(x- 7 ) 2  +Ss]-+dx, 

= 2[(2 - q ) 2  + Ss]*I; - 2 = 2( 1 - 7) + 27 - 2 ,  
= 0. (7.20) 
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Now (7.19) becomes 
(7.21) 

This is the same as Taylor's formula (6.7) with ,u the dipole moment of the source 
distribution inside the body, which is no longer equal to the dipole strength of 
the flow far from the body and obstacle.* 

As an example of the above results, let us suppose the obstacle is the plane 
x = - a. Then the method of images yields 

R(x ,  r 2 , ~ )  = [(x + (+ 2a)2 + r21-4. 

From (7.5) and (7.22) we find 

(7.22) 

(7.33) 

For a > 0 and e small, we expand (7.23) by the binomial theorem and find that 
(7.6) holds with 

(7.24) 

The binomial coefficients ai are given by (4.6). By using rl in (7 .11)  we obtain 

4 ax (7.25) 

The corresponding addition to the dipole moment, which we denote by ,u&, is 

From (6.7) we see that this term in the dipole moment contributes a term 
Mzfo = 4np& U-I to the virtual mass. If the plane obstacle represents a free surface 
on which @ = 0, the results (7.22)-(7.26) all hold provided the right sides are 
multiplied by - 1. 

The research in this paper was supported by the National Science Foundation 
under grant no. GP 3668. 

Appendix A. Asymptotic estimates of Pn and K, 
We shall now estimate the functions P,(x, E )  and K,(x, E ) ,  defined by (4.10) and 

(4.11), for small values of E .  In  (4.10) we introduce the integration variable 
u = (EX)-* w and (4.10) becomes 

The integrand is of one sign for all values of u > 0 and is O(u-2) as u becomes 
infinite. Therefore the right side of (A 1) is increased in magnitude if the upper 
limit is replaced by infinity and the resulting integral converges. Thus we con- 
clude from (A 1) that for all x > a and E small, 

Pn(x,s) = O(E"+i). (A 2 )  

* [Note  added in. proof.] Equation (7.21) is a special case of the generalized Taylor 
formula given by Landweber C% Yih (1956). 



Axially symmetric potential $ow around a slender body 145 

The same change of variable in (4.11) yields 

K,(x,s) = (€X)"+1 u2fi+1[u(l+u2)--b- 
i = O  

The integrand in (A 3) is also of one sign and behaves like an+lu-l as u becomes 
infinite. Thus by splitting the integral at u = 1 and adding and subtracting 
a,+,u-l to the second integral we can write (A 3) as 

The first integral is dependent of 6, the second is less in magnitude than the 
corresponding finite integral with upper limit infinity and the last integral is 
O(1oge). Thus (A 4) yields 

The result (A2) also holds for Pn and (A5) holds for R,, as we see from their 
definitions. 

Kn(X,€) = O(e"+~loge). (A 5 )  

Appendix B. Asymptotic expansion of K,, P, and H,  

them by using the following relations 
To expand the integrals K ,  and P, asymptotically for e small we first evaluate 

log{(x-a)+((x-a)2+€S)+ *log(eX), (B 1 )  

By using (B 1)-(B 3) in (4.10) and (4.11) we obtain 

h',(x,e) = B{[(x-.)2++.X]+(x-a)- (z-a)2-€Slog(x-a+[(x-a)2+€S]B) 
+ &Slog (ES)) ,  (B 4) 

~ [ l o g ( x - a + [ ( x - a ) ~ + e S ] ~ ) - ~ l o g ( d ) ] ,  n 3 1 ;  (B5)  

Po = [ ( X - a ) 2 + € X ] L ( € X ) L ( x - a ) ,  (B 6) 

n (z - a)2(n-j)+1 

- ,r U i ( € X ) i  + 
j = O  2(n  -j) + 1 

By replacing x - a by p - x in (B 4)-(B 7)  we obtain I?, and P,. 
10 Fluid Mech. 2s 
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functions g ,  h and ti defined by 

Richard A. Handebman and Joseph B. Keller 
To expand these results asymptotically in E we must first consider the 

g(x, 8 )  = [(z - C C ) ~  + ~ 8 1 4 ,  h(x, e )  = log (X - a: + [(x - C C ) ~  +EX]*, ti(%, E )  = (X - CC)~. 

These functions have power series in E given by (B 8 )  

m 

In (B 11) the functions t jk(x) are obtained by inserting the expansion for a(€) given 
by (2.6) into (x- a : ) j  and collecting terms in powers of 6.  

We define the functions g,& and fj by replacing x - a: by p - x in the definitions 
(B 8). Then these functions have power series expansions in e with coefficients Qk,  
Lk and f j k  which are given by making the same replacement in the expressions 

By using these power series in (B 4)-(B 7 ) )  taking account of the estimates 
for glc, h k  and t j k .  

(A 2 )  and (A 5) ,  and using the corresponding results for En and Pn we obtain 
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No terms which involve half integer powers of B appear in (B 14) and (B 15) since 
they cancel when P, - P ,  is formed. 

To expand Hn(x, E )  and a n ( x ,  E )  defined by (4.9), we use its Taylor series and 
obtain 
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